

Journal of Alloys and Compounds 320 (2001) 7–12

www.elsevier.com/locate/jallcom

Exchange interactions in R –Co–B ($R=Y$, Sm and Gd) compounds

Fumio Maruyama*

¹⁷⁷-11, *Shimadachi*, *Matsumoto* ³⁹⁰-0852, *Japan*

Received 11 December 2000; accepted 3 January 2001

Abstract

We calculated the molecular field coefficients, n_{RC_0} (R=Sm and Gd) and $n_{\text{C}_0 C_0}$ (R=Y) for R_{n+1} Co_{3n+5} B_{2n} (n=0, 1, 2, 3), R₂Co₁₇ and R_2 Co₁₄B using the experimental values of the Curie temperature. The R_{n+1} Co_{3n+5}B_{2n} compounds with $n=1$ (RCo₄B), $n=2$ (R₃Co₁₁B₄) and $n=3$ (R₂Co₇B₃) are derived from the RCo₅ structure by substituting B for Co at the 2c site. We examined the relationships between the values of n_{RCo} and n_{CoCo} and the B, Co and R concentrations, the Co moments and the two types of volume per formula unit RCo_mB_n and R_mCo_nB . \odot 2001 Elsevier Science B.V. All rights reserved.

Keywords: Magnetically ordered materials; Magnetic properties; Exchange interactions

types of exchange interactions occur: M–M, R–M and Generally, three kinds of Co atoms are assumed for R–R. In general, in compounds where the transition metal $R_{n+1}Co_{3n+5}B_{2n}$. Co(0), Co(1) and Co(2) have zero, one atoms carry a well established magnetic moment, the and two neighboring B-layers, respectively. The RCo_4B
M-M interaction dominates. It turns out to be strong compound has Co(0) and Co(1). The R₃Co₁₁B₄ and enough to produce an almost exact parallel alignment of R_2C_0 , B_3 compounds have Co(0), Co(1) and Co(2). The 2 743 region bas 3 734 region bas only Co(2) and the average Co interaction primarily governs the temperature dependence moment of $RCo₃B₂$ is very small [7]. of the 3d moment and the Curie temperature, T_c , of a The $R_2Co_{14}B$ compound crystallizes with a tetragonal 3d–4f compound. The R–M interaction essentially de-

Structure having the $P4_2/mnm$ space group. The $R_2Fe_{14}B$ termines the magnetic behavior of the rare-earth sublattice. compound is most attractive due to the industrial applica-Due to the localized character of the 4f shell, these R–M tion for permanent magnets. There are four R_2CO_{14} B units interactions are indirect, mediated by the 5d, 6s conduction (68 atoms) per unit cell. All the R and B atoms, but only electrons. The 3d–4f interaction produces a dominant four of the 56 Co atoms, reside in the $z = 0$ and 0.5 planes. contribution to the molecular field experienced by the Between these the other Co atoms form puckered, yet fully rare-earth moments. The R–R interaction between the 4f connected, hexagonal nets. The tetragonal structure of spins is generally the weakest one in the 3d–4f compounds $R_2Co_{14}B$ is closely related to the RCo₅-type structure [8].
To compare the strength of the exchange interactions

or yttrium, crystallize in a hexagonal structure having the B and related compounds, we calculated the molecular *P6/mmm* space group and are known to exhibit a very field coefficients, n_{RC} (R=Sm and Gd) and n_{CoCo} (R=Y) interesting series of crystal structures with special atomic for $R_{n+1}Co_{3n+5}B_{2n}$ ($n=0, 1, 2, 3$), R_2Co_{17} and $R_2Co_{14}B$ orderings depending on n [3–5]. The $R_{n+1}Co_{3n+5}B_{2n}$ using the experimental values o orderings depending on *n* [3–5]. The $R_{n+1}Co_{3n+5}B_{2n}$

1. Introduction compounds with $n=1$ (RCo₄B), $n=2$ (R₃Co₁₁B₄), $n=3$ $(R_2Co_7B_3)$ and $n=\infty$ (RCo₃B₂) are derived from the In rare-earth–transition metal $(R-M)$ compounds, three $RCo₅$ structure by substituting B for Co at the 2*c* site [6]. compound has $Co(0)$ and $Co(1)$. The $R_3Co_{11}B_4$ and $RCo₃B₂$ compound has only Co(2) and the average Co

structure having the $P4_2 /$ *mnm* space group. The $R_2 Fe_{14}B$

To compare the strength of the exchange interactions The R_{n+1} Co_{3n+5} B_{2n} compounds, where R is a rare earth between R and Co spins and between Co spins for R–Co– Moreover, we examined the relationships between the **E-mail address:* vfg04652@nifty.ne.jp (F. Maruyama). values of *n*_{RCo} and *n*_{CoCo} and those of the B, Co and R

^{0925-8388/01/\$ -} see front matter \circ 2001 Elsevier Science B.V. All rights reserved. PII: S0925-8388(01)00939-2

concentrations, the Co moment and the two types of volume per formula unit RCo_mB_n and R_mCo_nB .

2. Results and discussion

The exchange interactions can be analyzed by the molecular field model, which is commonly used to describe the variation of the Curie temperature in the R–Fe intermetallic series, under the assumption that the localized 3d-electron model is applicable.

Applying the two-sublattice molecular field model to the paramagnetic state [1], the following expression can be obtained,

$$
T_{\rm C} = [T_{\rm Co} + T_{\rm R} + \{(T_{\rm Co} - T_{\rm R})^2 + 4T_{\rm RCo}^2\}^{1/2}]/2, \tag{1}
$$

where

$$
T_{\rm Co} = n_{\rm CoCo} C_{\rm Co},\tag{2}
$$

$$
T_{\rm R} = \alpha^2 n_{\rm RR} C_{\rm R},\tag{3}
$$

and

$$
T_{\rm RCo} = |\alpha| n_{\rm RCo} (C_{\rm R} C_{\rm Co})^{1/2}
$$

= { (T_{\rm C} - T_{\rm Co}) (T_{\rm C} - T_{\rm R}) }^{1/2}. (4)

Here n_{ij} represents the molecular field coefficients, $C_R = N_R g^2 J (J + 1) \mu_B^2 / 3k_B$, N_R is the number of rare-earth
atoms per unit volume, $C_{C_0} = N_{C_0} 4S(S + 1) \mu_B^2 / 3k_B$, N_{C_0} is
the number of Co atoms per unit (1) /*g*. Neglecting T_R , T_C is given by The value of n_{RR} deduced from the ordering temperature

$$
T_{\rm C} = \{T_{\rm Co} + (T_{\rm Co}^2 + 4T_{\rm RCo}^2)^{1/2}\}/2\tag{5}
$$

$$
n_{\text{CoCo}} = T_{\text{Co}} / C_{\text{Co}} \tag{6}
$$

$$
n_{\rm RCo} = \{T_{\rm C}(T_{\rm C} - T_{\rm Co})/C_{\rm R}C_{\rm Co}\}^{1/2} / |\alpha|,\tag{7}
$$

 n_{RCO} , and n_{CoCo} , for $R_{n+1}Co_{3n+5}B_{2n}$ (*n*=0, 1, 2, 3), [7,11], [7,12], [9] and [13], respectively. The value of R_2Co_{17} and $R_2Co_{14}B$ using the experimental values of T_{C} . n_{CoCo} decreases w R_2 Co₁₇ and R_2 Co₁₄B using the experimental values of T_c . The dependence of the Curie temperature, T_c , on the Co n_{SmCo} and n_{GdCo} decrease for $R_{n+1}Co_{3n+5}B_{2n}$ ($n=1, 2, 3$) concentration for $R_{n+1}Co_{3n+5}B_{2n}$ ($n=0, 1, 2, 3$), R_2Co_{17} with increasing B content. In rare-earth transition-metal and $R_2Co_{14}B$ ($R = Y$, Sm and Gd) is shown in Fig. 1. The compounds, the exchange coupling of and R_2 Co₁₄B (R=Y, Sm and Gd) is shown in Fig. 1. The values of T_c for RCo₅, RCo₄B, R₃Co₁₁B₄, R₂Co₇B₃, itinerant 3d moments is indirectly promoted via a local R₂Co₁₇ and R₂Co₁₄B are from Refs. [9], [7,10], [7,11], 4f–5d interaction combined with an R_2Co_{17} and $R_2Co_{14}B$ are from Refs. [9], [7,10], [7,11], [7,12], [9] and [13], respectively. The values of T_c for interaction [14]. The 2p electrons of B lower the density of $R=Y$ are the smallest. The differences of the values of T_C 3d states at the Fermi level by the 3d–2p hybridization between those of $R=Y$ and those of $R=Sm$ and Gd for [15] and the values of Co 3d moment decrease, between those of $R=Y$ and those of $R=Sm$ and Gd for $R_{n+1}Co_{3n+5}B_{2n}$ (*n*=1, 2, 3) are larger than those for reduces the effect of 5d–3d hybridization and weakens the *RCo₅*, R_2Co_{17} and $R_2Co_{14}B$. Taking the value of T_c for 4f–3d exchange interaction, therefo the Y compounds as T_{Co} , n_{CoCo} can be deduced using Eq. values of n_{RCo} (R=Sm and Gd) for RCo₅, R₂Co₁₇ and

Fig. 1. The dependence of the Curie temperature (T_C) on the Co concentration for $R_{n+1}Co_{3n+5}B_{2n}$ ($n=0, 1, 2, 3$), R_2Co_{17} and $R_2Co_{14}B$
($R = Y$, Sm and Gd).

 $T_{\rm C} = \{T_{\rm Co} + (T_{\rm Co}^2 + 4T_{\rm RCo}^2)^{1/2}\}/2$ (5) for R–Ni compounds is 226 (Oe cm³/emu) [1]. That is and, n_{CoCo} and n_{RCo} , can be calculated using much smaller than the calculated n_{CoCo} and n_{RCo} values for $R_{n+1}CO_{3n+5}B_{2n}$ ($n=0, 1, 2, 3$), R_2CO_{17} and $R_2CO_{14}B$.

The dependence of n_{smCo} , n_{GdCo} , n_{CoCo} and Co moment, μ_{Co} , on the B concentration for R_{n+1} Co_{3n+5}B_{2n} (n=0, 1, and 2, 3), R_2Co_{17} and $R_2Co_{14}B$ is shown in Fig. 2. The values of n_{smCo} and n_{GdCo} , are those of n_{RCo} for R=Sm and Gd, respectively and the values of n_{CoCo} and μ_{Co} are those for respectively.
Here, we calculated the molecular field coefficients, $R=Y$. The values of μ_{C_0} for YCo_5 , YCo_4B , $Y_3Co_{11}B_4$,
Here, we calculated the molecular field coefficients, $Y_2Co_7B_3$, Y_2Co_{17} and $Y_2Co_7B_3, Y_2Co_{17}$ and $Y_2Co_{14}B$ are from Refs. [9], [7,10], [7,11], [7,12], [9] and [13], respectively. The value of 4f–3d exchange interaction, therefore n_{GdCo} decreases. The (6). Then n_{RCo} can be obtained by substituting the R_2 Co₁₄B are small in spite of the small B concentration or

 $R_2Co_{14}B$. decrease in the values of n_{CoCo} is larger than that of n_{GdCo} .

interaction is strong. The dependence of n_{CoCo} on the B moment is 7 μ_{B} and couples with the Co moment concentration is similar to that of μ_{Co} . The values of n_{CoCo} ferrimagnetically. The values of and μ_{Co} for YC_{O₅}, Y₂C_{O₁₇} and Y₂C_{O₁₄B are large. The proportional to those of μ_{Co} for Gd_{n+1}C_{O_{3n+5}B_{2n} (n=1, 2, values of n_{CoCo} are approximately proportional to those of 3) and for GdC}} values of n_{CoCo} are approximately proportional to those of T_{C} .

The dependence of n_{smCo} , n_{GdCo} , n_{CoCo} and μ_{Co} on the Co concentration for $R_{n+1}C_{0,3n+5}B_{2n}$ $(n=0, 1, 2, 3)$, R_2Co_{17} and $R_2Co_{14}B$ is shown in Fig. 3. The values of

Fig. 3. The dependence of n_{SmCo} , n_{GdCo} , n_{Coc} and μ_{Co} on the Co Fig. 4. The dependence of n_{SmCo} , n_{GdCo} and n_{Coc} on the R concentration concentration for R_{n+1} Co_{3n+5}B_{2n} (n = 0 concentration for $R_{n+1}Co_{3n+5}B_{2n}$ (*n*=0, 1, 2, 3), R_2Co_{17} and $R_2Co_{14}B$.

 $\mu_{\rm{Co}}$ are approximately proportional to those of the Co content. With increasing Co content, the values of n_{SmCo} and n_{GdCo} increase for $R_{n+1}Co_{3n+5}B_{2n}$ $(n=1, 2, 3)$ and decrease for RCo_5 , R_2Co_{17} and $R_2Co_{14}B$. The value of n_{smCo} is about two times larger than that of n_{GdCo} except for the values of R_2Co_{17} and $R_2Co_{14}B$. The change in the value of n_{SmCo} is larger than that of n_{GaCo} . With increasing Co content, the values of n_{CoCo} , increase for $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3), Y_2Co_{17} and $Y_2Co_{14}B$. The values of $n_{C_0C_0}$ for $Y_{n+1}Co_{3n+5}B_{2n}$ ($n=1, 2, 3$) are about 2.5 times larger than those for others. For $R_{n+1}Co_{3n+5}B_{2n}$ $(n=1, 2, 3)$, the value of n_{SmCo} is larger than that of n_{CoCo} .

The dependence of n_{SmCo} , n_{GdCo} and n_{CoCo} on the R concentration for $R_{n+1}C_{0_{3n+5}}B_{2n}$ ($n=0, 1, 2, 3$), $R_2C_{0_{17}}$ and R_2 Co₁₄B is shown in Fig. 4. The values of n_{GdCo} and n_{CoCo} approximately decrease with increasing R content. On the contrary, the value of n_{smCo} increases with increasing Sm content. In $R_{n+1}Co_{3n+5}B_{2n}$ (*n*=0, 1, 2, 3), for the same R concentration, the values of n_{SmCo} and n_{GdCo} and Fig. 2. The dependence of n_{smCo} , n_{GdCo} , n_{CoCo} and Co moment, μ_{Co} , on
the B concentration for R_{n+1} Co_{3n+3}B_{2n} (n=0, 1, 2, 3), R_2 C_{0₁₇ and
for YCo₅ is much larger considering the Y conten}

A plot of n_{GdCo} versus μ_{Co} for $\text{Gd}_{n+1}\text{Co}_{3n+5}\text{B}_{2n}$ $(n=0,$ 1, 2, 3), Gd_2Co_{17} and $Gd_2Co_{14}B$ is shown in Fig. 5. The the absence of B atoms. For those compounds, the Co–Co values of μ_{C_0} are obtained by assuming that the Gd ferrimagnetically. The values of n_{GdCo} are approximately

A plot of n_{CoCo} versus μ_{Co} for Y_{n+1} Co_{3n+5} B_{2n} (n=0, 1,

of n_{CoCo} increase with increasing μ_{Co} . The values of n_{CoCo} increases with increasing Sm content as shown in Fig. 4. for $YCo₅$, $Y₂Co₁₇$ and $Y₂Co₁₄B$ are much too large considering the values of μ_{Co} . The value of n_{CoCo} for

 Y_2Co_{17} and $Y_2Co_{14}B$.

 Y_2 Co₁₄B is large in spite of the presence of B atom, because the distance between B and Co is long and therefore the value of $\mu_{\rm Co}$ is large (see also Fig. 8).

In view of the different types of unit cells associated with the corresponding crystal structures, we have rewritten the formula composition as RCo_mB_n and used the lattice constants to calculate the volume, *V*, occupied by one formula unit RCo_mB_n . The values of lattice constants *a* and *c* for RCo₅, RCo₄B, R₃Co₁₁B₄, R₂Co₇B₃, R₂Co₁₇ and $R_2Co_{14}B$ are from Refs. [9], [7,10], [7,11], [7,12], [9] and [13], respectively. This *V* depends on the distance between R and Co. Next, we have rewritten the formula composition as R_mCo_nB and used the lattice constants to calculate the volume, *V*, occupied by one formula unit R_mCo_nB . This *V* depends on the distance between Co and B.

The values of n_{smCo} and n_{GdCo} plotted versus the corresponding reciprocal values of the normalized two types of volume per formula unit RCo_mB_n and R_mCo_nB for $R_{n+1}Co_{3n+5}B_{2n}$ (*n*=0, 1, 2, 3), R_2Co_{17} and $R_2Co_{14}B$ are shown in Fig. 7.

When *V* is the volume per formula unit RCo_mB_n , the values of n_{GdCo} almost decrease with increasing V^{-1} , but Fig. 5. A plot of $n_{\text{Gd}_2\text{Co}_{17}}$ and $\text{Gd}_2\text{Co}_{14}\text{B}$.
 $\text{Gd}_2\text{Co}_{17}$ and $\text{Gd}_2\text{Co}_{14}\text{B}$.
 $\text{Gd}_2\text{Co}_{17}$ and $\text{Gd}_2\text{Co}_{14}\text{B}$. distances between R and Co, the value of $n_{\rm SmCo}$ increases, 2, 3), Y_2Co_{17} and $Y_2Co_{14}B$ is shown in Fig. 6. The values which is consistent with the result that the value of $n_{\rm SmCo}$

Fig. 7. The values of n_{SmCo} and n_{GaCo} plotted versus the corresponding reciprocal values of the normalized two types of volume per formula unit Fig. 6. A plot of n_{CoCo} versus μ_{Co} for $Y_{n+1}Co_{3n+5}B_{2n}$ ($n=0, 1, 2, 3$), RCo_mB_n and R_nCo_nB for R_{n+1}Co_{3n+5}B_{2n} ($n=0, 1, 2, 3$), R₂Co₁₇ and Y_2Co_{17} and Y_2Co_{17} and $Y_2Co_{18}B$.

distances between B and Co, the values of n_{SmCo} and n_{GdCo} decrease for $R_{n+1}Co_{3n+5}B_{2n}$ (*n*=1, 2, 3). When the atoms with large moments. the decrease of V for $R = Gd$. expressed as

The values of μ_{Co} plotted versus the corresponding normalized cube root of the volume per formula unit $Y_{m}Co_{n}B$ for $Y_{n+1}Co_{3n+5}B_{2n}$ $(n=0, 1, 2, 3)$, $Y_2 \text{Co}_{17}$ and $Y_2 \text{Co}_{14}$ are shown in Fig. 8. Here Z_m is the magnetic valence; $2N_{sp}^{\uparrow}$ is the number of s
In both cases, the values of μ_{Co} are apparently proportional and p electrons particularly large for decreasing values of $V^{1/3}$ in the YCo_mB_n compounds. These results suggest that the values of μ_{Co} are proportional to the distances between Y and Co,

distance between B and Co becomes small, the 3d–2p The discussion of the 3d magnetization in rare-earth hybridization increases and the 3d moment decreases, intermetallics can be performed within the simple concept consequently the 5d–3d hybridization decreases and the of magnetic valence Z_{m} [18]. Within the magnetic valence 4f–3d exchange interaction weakens. The decrease of the model, the magnetic moment of an alloy is considered in 5d–3d hybridization due to the decreasing 3d moment is terms of magnetic moment, *M*, averaged over all atoms in larger than the increase of the 5d–3d hybridization due to the alloy. The mean magnetic moment per atom *M* is

$$
M = Z_{\rm m} + 2N_{\rm sp}^{\rm T}.\tag{8}
$$

$$
Z_{\rm m} = 2N_{\rm d}^{\rm T} - Z. \tag{9}
$$

and Co and B. Here N_d^{\dagger} is the number of electrons in the spin-up band and *Z* is the chemical valence. To apply the magnetic valence

Fig. 8. The values of μ_{Co} plotted versus the corresponding normalized $Y_{m}Co_{n}B$ for $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3), $Y_{2}Co_{17}$ and $Y_{2}Co_{14}B$.

Fig. 9. The values of n_{coc} plotted versus the corresponding reciprocal values of the normalized two types of volume per formula unit YCo_mB_n cube root of the volume per formula unit YCo_mB_n and per formula unit and per formula unit Y_mCo_nB for Y_{n+1}Co_{3n+5}B_{2n} (n=0, 1, 2, 3), Y₂Co₁₇ Y_mCo_nB_n (n=0, 1, 2, 3), Y₂C₀₁₇ and Y₂C₀₁₄B. and Y₂

References Fig. 10. The experimental magnetic moment as a function of magnetic valence for Y–Co–B, Y–Co, Y–Co–Fe–B, Fe, Co and Ni and the calculated moments with $N_{sp}^{\uparrow} = 0.45$, with strong ferromagnetism, in Eq. [1] E. Belorizky, M.A. Fremy, J.P. Gavigan, D. Givord, H.S. Li, J. (8). Appl. Phys. 61 (1987) 3971.

model, the Y-Co-B series can be rewritten as book of Magnetic-Materials, Vol. 7, North-Holland, Amsterdam,
 $Y_{y1}Co_{1-y}B_{y2}$ ($y = y1 + y2$). Then Z_m is expressed as [3] H. Osterreicher, F.T. Parker, M. Misroch, Appl. Phys

$$
Z_{\rm m} = 2N_{\rm d}^{\dagger} (1 - y) - Z_{\rm Co}(1 - y) - (Z_{\rm Y} y1 + Z_{\rm B} y2). \tag{10}
$$

Here N_d^{\uparrow} is taken to be the value for a strong ferromagnet

(=5). The values of chemical valence are $Z_{Co} = 9$, $Z_y = 3$,
 $Z_B = 2$ [18].

The experimental magnetic moment as a function of [8] B. Givord, H.S. Li, J.M.

magnetic valence for Y–Co–B, Y–Co, Y–Co–Fe–B, Fe, 497. Co and Ni and the calculated moments with $N_{sp}^{\uparrow} = 0.45$, [9] K.H.J. Buschow, Rep. Prog. Phys. 40 (1977) 1179.
with strong ferromagnetism, in Eq. (8) are presented in [10] H.S. Li, J.M.D. Coey, in: K.H.J. Buschow (Ed.) Refs. [19,20] and [17], respectively. For $Y_{n+1}Co_{3n+5}B_{2n}$ [13] K.H.J. Buschow, D.B. de Mooij, S. Sinnema, R.J. Radwanski, J.J.M. *n* = 1, 2, 3), the experimental magnetic moment is below Franse, J. Magn. Magn. Mater. $(n=1, 2, 3)$, the experimental magnetic moment is below Franse, J. Magn. Magn. Mater. 51 (1985) 211.
 FRANSE Brooks, O. Eriksson, B. Johanson, J. Phys. Condens. Matter
 ELAL M.S.S. Brooks, O. Eriksson, B. Johanson, J. P the calculated one, which shows that weak ferromagnetism $[14]$ M.S.S. Brooks, O. Eriksson, B. Johanson, J. Phys. Condens. Matter
is present. For YCO_5 and Y_2CO_{17} , the experimental magnetic moment is near the calcula compounds show strong ferromagnetism. For J. Magn. Magn. Mater. 132 (1994) 159. Y_2 (CO_{1-x} Fe_x)₁₄B, a transition from weak to strong ferro- [17] F. Maruyama, H. Nagai, Y. Amako, H. Yoshie, K. Adachi, Jpn. J. 2 l2*x* 14*Ry* 14*B*, a transition occurs as x increases from 1 to 0.9 appl. Phys. 3 magnetism occurs as x increases from 1 to 0.9.

3. Conclusions 3741.

We calculated the molecular field coefficients, $n_{RC₀}$, Appl. Phys. 34 (1995) 1542. $(R=Sm$ and Gd) and n_{CoCo} $(R=Y)$ for $R_{n+1}Co_{3n+5}B_{2n}$ $(n=0, 1, 2, 3)$, R₂Co₁₇ and R₂Co₁₄B using the experimental values of the Curie temperature.

With increasing B content, the value of n_{CoCo} decreases. The values of n_{smCo} and n_{GdCo} decrease for $R_{n+1}Co_{3n+5}B_{2n}$ (*n*=1, 2, 3). With increasing Co content, the values of n_{SmCo} and n_{GdCo} increase for $R_{n+1}Co_{3n+5}B_{2n}$ $(n=1, 2, 3)$ and decrease for RCo₅, R₂Co₁₇ and R₂Co₁₄B and those of n_{CoCo} increase. With increasing R content, the values of n_{GdCo} and n_{CoCo} approximately decrease, but the value of n_{SmCo} increases.

With decreasing distances between R and Co, the value of n_{SmCo} increases and that of n_{GdCo} decreases. With decreasing distances between B and Co, the values of n_{smCo} and n_{GdCo} decrease for R_{n+1} Co_{3n+5}B_{2n} (n = 1, 2, 3). The values of $\mu_{\rm Co}$ are proportional to the distances between Y and Co, and Co and B. With increasing distances, the values of μ_{Co} increase and those of n_{CoCo} increase.

The tendency of the values of n_{RCO} and n_{COCO} for $R_{n+1}Co_{3n+5}B_{2n}$ (*n*=1, 2, 3) is different from that for RCo_5 , R_2Co_{17} and $R_2Co_{14}B$.

-
- [2] J.J.M. Franse, R.J. Radwanski:, in: K.H.J. Buschow (Ed.), Hand-
-
- 287.

^[4] Y.B. Kuzma, N.S. Bilonizhko, S.I. Mykhalenko, G.F. Stepanova,

N.F. Chaban. J. Less-Common Metals 67 (1979) 51.
-
-
-
-
-
-
-
-
-
-
-
-
-
- [18] J.P. Gavigan, D. Givord, H.S. Li, J. Voiron, Physica B 149 (1988) 345.
- [19] F. Maruyama, H. Nagai, K. Adachi, J. Phys. Soc. Jpn. 62 (1993)
- [20] F. Maruyama, H. Nagai, Y. Amako, H. Yoshie, K. Adachi, Jpn. J.